» » Mastering Data Science and Machine Learning Fundamentals


Mastering Data Science and Machine Learning Fundamentals

Author: ziuziu on 1-11-2019, 07:56, views: 240

Mastering Data Science and Machine Learning Fundamentals
Mastering Data Science and Machine Learning Fundamentals
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 44100 Hz, 2ch | 568 MB
Duration: 2 hours | Genre: eLearning | Language: English

A Beginner Course in Data Science, Machine Learning, Regression, Classification and Clustering (THEORY ONLY)
What you'll learn
Mastering Data Science fundamentals
Mastering Machine Learning Fundamentals
How and when to use each Machine Learning model
Make regression using Linear Regression, SVM, Decsision Trees and Ensemble Modeling
Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees, Naive Bayes, and PCA
Just some high school mathematics level.
Data Science and Machine learning is not just another buzzword. So many professionals who work in different areas such as IT, security, marketing, automation, and even medicine, know that machine learning is the key to development. Without it, so many amazing things that make our lives easier - such as spam-filtering, Google search, relevant ads, accurate weather forecasting or sport prediction - would be impossible. This course is the starting point you've been waiting for.
This course is designed for students and learners who want to demystify the concepts, statistics, and math behind machine learning algorithms, and who are curious to solve real-world problems using machine learning. The course is structured to start with the basics, and then to gradually develop an understanding of the array of machine learning and data science algorithms.
This ensures that no prior knowledge is required to start learning from this course. The content of this course is specially designed to encompass all the concepts that come under the domain of data science. This course not only guides you through the problems and concepts of machine learning but also elaborates how to successfully implement those concepts.
AI Sciences will draw on our expertise in data science and AI to guide you through what matters, and what doesn't.
Each concept is introduced in plain English, avoiding confusing mathematical notation and jargon. You won't find academic, deeply mathematical coverage of these algorithms in this course - the focus is on basics understanding of them.
We'll cover the data science, machine learning, and data mining techniques real employers are looking for, including:
Linear Regression
Support Vector Machine (SVM)
Decision Tree and Random Forest
Logistic Regression
K-Nearest Neighbors (K-NN)
Naive Bayes
K-Means Clustering
Hierarchical Clustering
Evaluating Machine Learning Models Performance
Neural Networks Best
Practices for Data Scientist
and much more!
If you're new in the data science field, don't worry - the course starts with a crash course.
If you're a programmer looking to switch into an exciting new career track, or a data analyst looking to make the transition into the AI industry - this course will teach you the basic techniques used by real-world industry data scientists. These are topics any successful technologist absolutely needs to know about, so what are you waiting for?
Enroll now!
Who this course is for:
Beginners who want to approach Machine Learning, but are too afraid of complex math to start
Students and academicians, especially those focusing on Machine Learning
Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way

Mastering Data Science and Machine Learning Fundamentals

Download link :
(If you need these, buy and download immediately before they are delete)
Links are Interchangeable - Single Extraction - Premium is support resumable


Dear visitor, you are browsing our website as Guest.
We strongly recommend you to register and login to view hidden contents.

Add comments

Your Name:*
Security Code: *
Click on the image to refresh the code if it cannot be viewed